Dynamic Programming – Integer Knapsack Worksheet

Read the information presented on http://www.ship.edu/~thb/csc500/knapsack.html

Item	1	2	3	4	5	6
Sizes	5	8	9	7	9	13
Values	7	9	8	8	10	12

Wł	at val	116	bluow	VOII	σet f	rom	the	oreedv	ุลท	proach
* * 1	ıaı vai	uc	would	you	gui	1 0111	unc	greeuy	a_{ν}	proach

Use the pseudo-code presented there to fill in the values of the following table. Assume the knapsack has a capacity of "15"

Items> Capacity	i:1 7/5	i:2 9/8	i:3 8/9	i:4 8/7	i:5 10/9	i:6 12/13
0						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						

According	to	the	tab	le:
-----------	----	-----	-----	-----

What is the maximum value that can be achieved with this knapsack?
--

What is the smallest knapsack that can achieve the same value?:

What items are in your knapsack? _____

Dynamic Programming – Integer Knapsack Solution

Read the information presented on http://www.ship.edu/~thb/csc500/knapsack.html

Item	1	2	3	4	5	6
Sizes	5	8	9	7	9	13
Values	7	9	8	8	10	12

What value would you get from the greedy approach? 12

Use the pseudo-code presented there to fill in the values of the following table. *Assume the knapsack has a capacity of "15"*

Items>		i:1	i:2	i:3	i:4	i:5	i:6
Capacity		7/5	9/8	8/9	8/7	10/9	12/13
0	0<	0<	0<	0<	0<	0<	0<
1	0<	0<	0<	0<	0<	0<	0<
2	0<	0<	0<	0<	0<	0<	0<
3	0<	0<	0<	0<	0<	0<	0<
4	0<	0<	0<	0<	0<	0<	0<
5	0<	7^) 7<	7<	7<	7<	7<
6	0<	70	7<	7<	7<	7<	7<
7	0<	7^	7<	7<	8^	8<	8<
8	0<	7^	9^	9<	9<	9<	9<
9	0<	7^	9^	9<	9<	10^	10<
10	0<	7^	9^	9>	9<	10^	10<
11	0<	7^	9^	9<	9<	10^	10<
12	0<	7^	9^	9<	15^	15<	15<
13	0<	7^	16^	16<	16<	16<	16<
14	0<	7^	16^	16<	16<	17^	17<
15	0<	7^	16^	16<	17^	(17^)	17<

According	to	the	tab	le:
-----------	----	-----	-----	-----

What is the maxin	num value that o	an be achieved	with this kna	psack?	17

	What is the smallest kna	apsack that can a	chieve the same val	ue?:	14
--	--------------------------	-------------------	---------------------	------	----